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Extracorporeal membrane oxygenation (ECMO) is a life-saving cardiopulmonary bypass device used in patients with heart and lung failure (Fig.1).

• Patients on ECMO receive numerous drugs. [1] Dosing is often unknown because the ECMO circuit components can adsorb drugs [2]

• The adsorption is driven primarily by hydrophobic and electrostatic interactions [3]

• Mortality of ECMO-patients often exceeds 40% and is suspected to be due, in part, to significantly altered drug disposition by the ECMO circuit, resulting in suboptimal

dosing [4]

Poloxamer 407 (P407) is a triblock copolymer consisting of a central hydrophobic block of Poly(propylenglycol) (PPG) flanked by two hydrophilic blocks of poly(ethylene

glycol) (PEG).

• P407 spontaneously assembles to micelles in aqueous solutions, where PPG forms the hydrophobic core and PEG a hydrophilic shell

• Hydrophobic drugs or drugs with poor water solubility can be encapsulated in micelles, the hydrophilic shell will avoid the interactions

of drugs with the hydrophobic or charged surfaces

Propofol was selected as a model drug because it is widely used in ECMO patients, highly adsorbed [5] and has favorable physicochemical properties for micellar

encapsulation.
1

We aim to reduce drug adsorption by the ECMO-system by micellar encapsulation, increase overall drug-bioavailability and optimize dosing. (Fig.2).

• Micelles were successfully formulated and loaded with propofol

• Reproducible results for physicochemical micelle properties were demonstrated

• The incorporation of propofol dramatically reduced the PDI of the formulation indicating

lower polydispersity of the propofol loaded micelles

• The size of the micelles increased significantly after the incorporation of propofol

• 10 mg/ml propofol was incorporated in 4 & 6% P407 micelles

• Morphology of propofol loaded and free P407 micelles was demonstrated by SEM

• By optimizing the mobile phase composition, were able to quantify propofol via HPLC to

set up the analytical backbone for subsequent experiments
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Method
• Stability upon lyophilization was evaluated:

• The PDI increased after reconstitution when no cryoprotectant was used. Cryoprotectants such as

sucrose, dextrose and trehalose stabilized the micelle properties during the lyophilization process.

(Fig.6)

• Dextrose performed best in maintaining size and PDI of propofol free and loaded micelles.(Fig.6/7)

• A reverse phase/UV-HPLC method was implemented for propofol quantification

• The mobile phase consisted of Acetonitrile (ACN) – Methanol (MeOH) – Water (H2O)

• Different mobile phase ratios were tested to optimize the peak resolution

• A proportion of 65-5-30 % was selected and a calibration curve was created. (Fig.8)

SEM-Imagines: SEM images were taken from propofol free & propofol loaded micelles.

Results

Future directions
To investigate the encapsulation efficiency, drug loading capacity and release kinetics of

propofol, followed by ex-vivo studies with the ECMO device to compare adsorption

between free and micellar propofol. (Fig.10)
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Figure 10: Ex-vivo studies, experimental design. ECMO parts like pump and oxygenator can be excluded from the 

circuit so drug adsorption by the individual ECMO-part can be determined.

Figure 2: Drug adsorption by the ECMO circuit is avoided by micellar encapsulation. 

Figure 1: ECMO modalities  [7] 

VV: venovenous, for respiratory support,

VA: venoarterial, for circulatory and/or respiratory support

Propofol

Figure 9: SEM images: Propofol loaded P407 micelles (1&2), Propofol free micelles (3&4), P407 = 4% (w/v) Propofol 10 mg/ml
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Figure 3: Thin-film method: P407 & Propofol are dissolved in MeOH. A rotary evaporator is used to form a homogenous thin

film inside the round bottom flask. After rehydration with an aqueous medium micelles are formed.    

• The Thin-Film Method was utilized for micelle manufacturing (Fig.3)

• Physiochemical properties such as hydrodynamic radius, polydispersity (PDI), zeta

potential (ZP) and micelle morphology were determined by Dynamic Light Scattering (DLS)

& Scanning Electron Microscopy (SEM), respectively

• Propofol was quantified by reverse phase HPLC
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Figure 7: Lyophilization and reconstitution of propofol loaded 
micelles. Dextrose showed the best results after reconstitution. 
Data represent the mean ± SD.
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Figure 8: HPLC method implementation with variating the mobile phase composition. ACN-MeOH-H2O.   
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P407 ZP

2% -1.42 mV
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6% -0.17 mV
Figure 5: ZP of Propofol loaded

micelles (10 mg/ml).
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Figure 4a: Comparison of propofol free and propofol 

loaded micelles in size. Data represents mean ± SD.

p ≤ 0.05 *, p ≤ 0.01 **, p ≤ 0.001 ***

Figure 4b: Comparison of propofol free and propofol loaded 

micelles in polydispersity. Data represents mean ± SD. 

p < 0.05 *, p ≤ 0.01 **, p ≤ 0.001 ***

• The hydrodynamic radius and PDI for drug-free micelles were 20-23 nm and 0.200,

respectively

• The size remained constant at different concentrations

• An increase in size was observed after incorporation of propofol (Fig.4a)

• The PDI dramatically decreased to as low as 0.04 (Fig.4b)

• 2% (w/v) P407 micelles were homogenously formed in the presence of 1 mg/ml propofol

but showed a strong increase in size and PDI when 10 mg/ml propofol was used. (Fig.4a/b)

• With increasing the P407 concentration, 10 mg/ml propofol also resulted in lower PDI

values

.
• The zeta potential of propofol free micelles was -5.0 mV.

After incorporation of propofol the ZP slightly increased. (Fig. 5)

• Micelles were stored for 30 days at 4°C.

The PDI and size remained constant

Figure 6: Lyophilization and reconstitution of propofol free micelles 
with different cryoprotective agents. Dextrose showed the best 
results after reconstitution. Data represent the mean ± SD.
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