SECTAH

Introduction

Human bone marrow mesenchymal stromal cells (hBMSCs) attract significant clinical interest for their ability to modulate the host immune system via the secretion of paracrine factors and repair/replace damaged tissue through multipotent differentiation¹ **MSC Regeneration**

MSC sheets are a promising alternative to injected suspensions, the current clinical standard for cell therapy, demonstrating improved tissue engraftment, retention, survival, and therapeutic efficacy² **MSC Sheets**

hBMSCs require *in vitro* expansion, manipulation, and banking for use in cell therapies such as MSC necessitating optimized sheets, culture conditions

fibroblast growth factor Basic (bFGF) is the most common supplement used in MSC culture media to promote proliferation³, but its effects on hBMSCs are not fully characterized

The goal: Maximize MSC proliferation, maintain intrinsic MSC phenotype & characteristics

Aim: Determine effects of bFGF on (1) phenotype and (2) sheet fabrication ability of hBMSCs

Effects of Basic Fibroblast Growth Factor on Mesenchymal Stem/Stromal Cell Phenotype & Sheet Fabrication

¹Cell Sheet Tissue Engineering Center (CSTEC), University of Utah; ²Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah; ³Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA; ⁴Institute for Advanced Biomedical Sciences, Tokyo Women's Medical University, Tokyo, Japan

