

THE UNIVERSITY OF UTAH **NEUROROBOTICS LAB**

Connor D. Olsen¹, Eric S. Stone², Troy N. Tully², Nathaniel R. Olsen³, Gregory A. Clark², Jacob A. George^{1,2,3,4} ¹Electrical Engineering, ²Biomedical Engineering, ³Mechanical Engineering, ⁴Physical Medicine and Rehabilitation, University of Utah

Background

Upper-limb amputees must perform unnatural body movements to compensate for the lack of a functional wrist. This can lead to musculoskeletal damage over long periods.

We designed and built a low-cost, adaptable wrist to without compensatory movements decrease increased cognitive load.

Electromyographically Controlled Prosthetic Wrist Improves Dexterity and Reduces Compensatory Movements

Manipulating Wrist Did Not Increase **Cognitive Load**

With Wrist

A lower subjective workload score from NASA Task Load Index indicates a less cognitivley demanding task.

Faster (lower) response time to external stimulus indicates less cognitive demand on secondary task

Acknowledgement

Funding: NIH DP5-0D029571, DARPA BTO HAPTIX #N66001-15-C-4017

Contact

connor.olsen@utah.edu