Evaluation of cultureware effects on human-derived chondrocyte sheets

Motivation

Human chondrocyte-derived cell sheets to treat osteoarthritis 32.5 million American adults suffer from osteoarthritis (OA). Articular cartilage does not regenerate naturally^[2]; joint replacement is risky and expensive^[2]. Allogeneic, shelf stable, readily available human chondrocyte cell sheets attempt to solve current OA treatment deficiencies.

Background

Utilization of surgical discards as potent chondrocyte source Polydactyly surgical discards provide human-derived chondrocytes (PDCs). These cells show excellent proliferative and differentiation characteristics^[2]. A single donor bank can produce cell sheets to treat thousands of patients at high passages without severe immune response. Cell characteristics may suffer at high passages. **Characterization of cell sheet cultureware is needed**

Cell sheet contraction after detachment from culture surfaces has been reported as a predictor of chondrogenic potential^[1]. The effect of cell sheet culture surface on sheet contraction and gene expression as a function of passage is unexamined. Newer thermally responsive culture dishes offer substantial advantages over thermally responsive inserts.

Aim: distinguish TRI and TRCD cultureware effects on human polydactyly derived chondrocyte cell sheets vs. passage number

expand chondrocyte cel Frozen PDC's

Materials & Methods

A. Culture method

thermally seeded PDCs onto responsive culture dish (TRCD) and insert (TRI). Cell sheet detached from surface at room temperature after culture.

B. Cell sheet characterization

Half of cell sheet used for IHC staining of collagen types 1 and 2, Polydactyl derived Safranin-O stain for nuclei and proteoglycans. Other half used for PCR for SOX9 expression

C. PDC culture media

- DMEM/F12
- 20% Fetal Bovine Serum
- ► 1% Anti-Anti
- > Ascorbic acid to conc. 100µg/mL

Adam Ford¹, Nico Metzler^{1,3}, Makoto Kondo^{1,2}, David Grainger¹⁻³, Teruo Okano^{1,2,4} ¹Cell Sheet Tissue Engineering Center (CSTEC), University of Utah; ²Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah; ³Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA; ⁴Institute for Advanced Biomedical Sciences, Tokyo Women's Medical University, Tokyo, Japan

